
Comparative analysis of crystal-field parameters for rare-earth ions at monoclinic sites in

AB(WO4)2 crystals: I. Tm3+ in KGd(WO4)2 and KLu(WO4)2, and Ho3+ and Er3+ ions in

KGd(WO4)2

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys.: Condens. Matter 22 045501

(http://iopscience.iop.org/0953-8984/22/4/045501)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 06:38

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/22/4
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 22 (2010) 045501 (11pp) doi:10.1088/0953-8984/22/4/045501

Comparative analysis of crystal-field
parameters for rare-earth ions at
monoclinic sites in AB(WO4)2 crystals: I.
Tm3+ in KGd(WO4)2 and KLu(WO4)2,
and Ho3+ and Er3+ ions in KGd(WO4)2

Czesław Rudowicz and Paweł Gnutek

Institute of Physics, West Pomeranian University of Technology, Aleja Piastów 17,
70-310 Szczecin, Poland

E-mail: crudowicz@zut.edu.pl

Received 5 November 2009, in final form 3 December 2009
Published 5 January 2010
Online at stacks.iop.org/JPhysCM/22/045501

Abstract
The crystal-field (CF) parameters determined by various authors for rare-earth ions at
monoclinic sites in AB(WO4)2 crystals are reanalyzed using a methodology incorporating
several approaches, namely standardization, multiple-correlated fitting technique and
closeness of CFP sets. In Part I recent spectroscopic data for Tm3+ ions in KGd(WO4)2

(KGdW) and KLu(WO4)2 (KLuW), and Ho3+ and Er3+ ions in KGdW, which were
interpreted using the free-ion (FI) and CF parameter (CFP) sets, are thoroughly revisited.
Our reanalysis enables clarification of several doubtful aspects involved in the previous
studies. The initial CFPs for fitting, calculated using the simple overlap model (SOM),
differ markedly from the fitted CFPs for Tm3+ ions in KGdW and KLuW. An inspection of
the pertinent CFP sets reveals deeper intrinsic differences between the model and fitted
CFPs. The model CFPs and the fitted CFPs for RE3+ ions in both KGdW and KLuW
crystals turn out to be non-standard. Importantly, the model and fitted CFP sets for
Tm-KLuW belong to disparate regions of the CFP space and thus are intrinsically
incompatible, i.e. such sets should not be directly compared. Thus the CFP sets reported in
the literature require reconsideration in view of the intrinsic properties of monoclinic CF
Hamiltonians previously not taken into account. Standardization of the originally
non-standard CFP sets is carried out to ensure direct comparability of the CFP sets in
question with other literature data. The correlated alternative CFP sets are calculated for
each original set to facilitate future applications of the multiple correlated fitting technique,
which enables improving overall reliability of the fitted CFPs. The closeness of the
standardized CFP sets is assessed in a quantitative way. Our considerations indicate also
the importance of proper definitions of the axis system used in the CFP model calculations
and provide arguments for the nominal meaning of the axis systems assigned to the fitted
CFPs. The consistent methodology proposed here may be considered as a general
framework for analysis of CF levels and CFP modelling for rare-earth and transition-metal
ions at monoclinic symmetry sites in crystals. CFP sets for other rare-earth ions in
AB(WO4)2 crystals will be reanalyzed in Part II.

0953-8984/10/045501+11$30.00 © 2010 IOP Publishing Ltd Printed in the UK1
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1. Introduction

Accurate modelling of crystal-field (CF) interactions and
interpretation of optical absorption spectra is important for
a proper understanding of the characteristics important for
potential applications of luminescent and laser materials as
well as extracting useful information on the spectroscopic
properties of the 4fN rare-earth (RE) and 3dN transition-
metal ions doped into host crystals [1–8]. An important
class of materials with applications in optoelectronics as
solid state lasers consists of crystals with the formula
AB(WO4)2 doped with RE3+ ions. For this purpose,
spectroscopic characterization has recently been carried out
for, for example, Tm3+ [9, 10] and Er3+ [11] ions in
KGd(WO4)2 (KGdW), Tm3+ ions in KLa(WO4)2 [12] and
Dy3+ ions in KY(WO4)2 [13]. Subsequently, CF analysis and
fitting of the crystal-field parameters (CFPs) followed. This
is an increasingly difficult task with the lowering of the site
symmetry of RE3+ ions [4, 5]. Yet the intrinsic properties
of the orthorhombic [14, 15], monoclinic [16–18] and
triclinic [19, 20] CF Hamiltonians, which bear significantly
on the meaningfulness of CF studies, appear to be not
fully recognized by some authors, as discussed in the
review [21]. Recent examples of an apparent unawareness of
these properties are provided by optical spectroscopy studies
of laser crystals doped with RE3+ ions: Tm3+ ions in KGdW
and KLu(WO4)2 (KLuW) [22], and Ho3+ and Er3+ ions in
KGdW [23].

In this paper we present a consistent methodology for
CF analysis for transition ions at monoclinic (Cs, C2, C2h)

sites in crystals taking into account the intrinsic properties of
monoclinic CF Hamiltonians [16–20]. Using this methodology
recent Pujol’s et al CFP sets for Tm3+ ions in KGdW
and KLuW [22], and Ho3+ and Er3+ ions in KGdW [23],
are reanalyzed in Part I, whereas CFP sets for Pr3+ and
Nd3+ ions in other AB(WO4)2 crystals [24–26] will be dealt
with in Part II. Optical absorption measurements [22] were
interpreted using ten free-ion parameters and 15 monoclinic
CFPs expressed in the Wybourne notation [1, 4, 5]. In
total over 50 experimental CF energy levels arising from
the Tm3+ (4f12) electronic configuration were identified in
the optical spectra and assigned for each crystal. To obtain
reliable starting CFPs, the simple overlap model (SOM)
calculations [27, 28] were carried out in the initial phase of
CF analysis [22]. Simultaneous fittings of the 24 parameters,
with some constraints on the free-ion parameters and the
‘imaginary’ part of the second-rank CFP Im B22 set to zero
(i.e. the R approach defined in [16, 18]), yielded the fitted CFPs
differing markedly from the SOM-determined CFPs for Tm3+
ions in both KGdW and KLuW.

An inspection of the CFP sets [22, 23] reveals, however,
that the model CFPs and the fitted CFPs [22] for RE3+
ions in both crystals are non-standard [14, 16]. Importantly,
the model and fitted CFP sets for Tm-KLuW [22] belong
to disparate regions of the CF parameter space. Such
CFP sets are intrinsically incompatible [21] and, in spite
of their apparent general closeness, should not be directly
compared [17, 18, 21]. The authors [22, 23] seem to be

unaware of the intrinsic properties of the orthorhombic [14, 15]
and monoclinic [16–20] CF Hamiltonians, recently reviewed
in [21]. The present paper addresses the problems involved
in the CF studies of Tm3+ ions in KGdW and KLuW [22]
as well as Ho3+ and Er3+ ions in KGdW [23], which bear
profoundly on reliability of theoretical and experimental CFPs.
The available CFP sets are reanalyzed using methodology
incorporating several approaches worked out by us earlier,
namely, standardization, multiple correlated fitting technique
and closeness of CFP sets [14–20]. Our considerations
enable clarification of several doubtful aspects involved in the
studies [22, 23] as well as an explanation of the apparent
disparity between the model CFP sets and the fitted CFP sets
for Tm3+ ions in KGdW and KLuW determined by Pujol et al
[22].

This paper is organized as follows. In section 2 theoretical
background and methodology for the analysis of monoclinic
CFP sets is briefly outlined. General aspects requiring
clarification in Pujol’s et al [22, 23] studies are considered
in section 3. Comparative analysis of CFPs for Tm3+ ions
in KGdW and KLuW, and Ho3+ and Er3+ ions in KGdW, is
carried out in section 4. Finally, a summary and conclusions
are provided in section 5.

2. Theoretical background and methodology for
analysis of monoclinic CFP sets

The total Hamiltonian for the energy level calculations and
fitting the observed energy levels for 4fN ions in crystals
consists of the free-ion (HFI) terms, which is spherically
symmetric and need not to be considered here, and crystal-field
(HCF) terms, which depend on the local site symmetry. In the
compact form [29] HCF is expressed in the Wybourne notation
as [1, 4, 5]

HCF =
∑

k,q

Bkq Ckq (x, y, z) (1)

with k = 2, 4 and 6. The number of non-vanishing
CFP components q in equation (1) depends on the local site
symmetry [1–8]. For a review of the operator and parameter
notations used in optical spectroscopy and the EMR area,
see [29, 30].

For monoclinic symmetry the axis system (x, y, z) in
equation (1) may be chosen with respect to the monoclinic
symmetry C2 axis (or monoclinic direction) in one of three
different ways, i.e. C2‖z, C2‖x or C2‖y [16–18]. The case
C2‖x and C2‖y corresponds to the transformation of the axis
system (xyz → yzx) and (xyz → zxy), respectively. Each
of these three physically equivalent cases corresponds to a
specific form of the CF Hamiltonian and thus yields a different
set of CFPs. The case C2‖z is most frequently employed in the
literature and corresponds to HCF:

HCF = B20C20 + Re B22(C22 + C2−2) + Im B22(C22 − C2−2)

+ B40C40 + Re B42(C42 + C4−2) + Im B42(C42 − C4−2)

+ Re B44(C44 + C4−4) + Im B44(C44 − C4−4)

+ B60C60 + Re B62(C62 + C6−2)

+ Im B62(C62–C6−2) + Re B64(C64 + C6−4)

2
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+ Im B64(C64–C6−4) + Re B66(C66 + C6−6)

+ Im B66(C66–C6−6). (2)

For the intrinsic properties of the orthorhombic [14, 15],
monoclinic [16, 17] and triclinic [18–20] CF Hamiltonians the
readers may consult the pertinent references. The reanalysis of
the papers [22, 23] in sections 3 and 4 indicates that the authors
have apparently been unaware of the intrinsic properties in
question.

Due to the general properties of the symbolic CFPs [18]
in equation (2), the parameter Im B22 in equation (2) may be
set to zero by a suitable rotation by the angle α about the z
axis, denoted ‘α/Oz’, determined by the ratio of the original
CFPs [16]:

tan(2α) = Im B22/ Re B22. (3)

Thus, the number of parameters in HCF in equation (2) may
be reduced by one. Note that reduction of the transformed
(primed) Im B ′

22 = 0 yields the CFP sets expressed in the
principal axis system of the second-rank CF terms [16, 19].
The fitting procedures based on this reduction are classified as
the R(reduced) approach, to distinguish from the C(complete)
approach employing all monoclinic CFPs in equation (2) or its
equivalent forms [16–18]. The R approach has been utilized
for the CFP fittings in [22, 23], which is acceptable (see,
e.g., [17, 18]). However, as discussed in section 3, the usage of
the R approach in the theoretical SOM calculations in [22] is
inappropriate.

The standardization of CF Hamiltonians [14–20] is
utilized to ensure direct comparability of the CFP sets taken
from various sources [21]. The orthorhombic standardization
is based on limiting the rhombicity ratio:

κ = Re B22/B20 (4)

in the Wybourne notation [1, 4, 5] to the standard range
(0, 1/

√
6 ≈ 0.408) and is equivalent to the condition of

the maximal values of Bk0 axial parameters [31]. Choices
for assigning the orthorhombic symmetry axes are provided
in appendix A. The orthorhombic standardization idea [14]
has been extended and applied to monoclinic [16–18] and
triclinic HCF [19, 20]. Importantly, for the lower symmetry
cases CFP sets must be first expressed in the principal axis
system of the second-rank CF terms [16–21]. A review
of specific applications of standardization for analysis of
orthorhombic and lower symmetry CFP sets has been provided
in [21]. The standardization transformations S2–S6 [14]
(see appendix A) are performed on the original sets S1
using the CST package [32]. The ‘pure’ orthorhombic and
‘pure’ monoclinic terms in HCF, equation (2), transform under
the standardization transformations Si independently from
each other, e.g. Im B22 becomes Im B21 or Re B21 [16].
Orthorhombic and monoclinic standardization transformations
of CFPs in the Wybourne notation are listed explicitly in
appendix B.

The intricate low symmetry aspects inherent in the
spectroscopic studies [22, 23] and the resulting monoclinic
CFP sets are reanalyzed in sections 3 and 4, respectively.
Our methodology incorporates the following approaches:

standardization of CF Hamiltonians [14, 16], multiple
correlated fitting technique [16] and closeness of CFP
sets [15, 18, 33, 34]. Our considerations enable clarification
of several doubtful aspects identified in [22, 23]. The
concept of standardization of CF Hamiltonians [14, 16] is
utilized to ensure direct comparability of the CFP sets under
consideration [21]. Standardization of CFP sets calls for
corrections to the CFP systematics across the RE series
presented in [22, 23]. Various alternative CFP sets are
calculated for possible applications of the multiple correlated
fitting technique [16], which would enable improving overall
reliability of the fitted CFPs [17, 18]. Closeness of
standardized CFP sets is quantitatively assessed using the
closeness factors and the norm ratios [15, 18, 33, 34].

3. General aspects requiring clarification

Critical examination of the papers [22, 23] reveals several
doubtful aspects that may be categorized as discussed below.
Points (ii)–(v) below indicate convincingly the importance of
proper definitions of the axis system used in model calculations
of CFPs as well as provide arguments for the nominal meaning
of the axis systems that can be assigned to the fitted CFP sets.

(i) Notation for CFP symbols

Due to the Hermitian properties of the operators Ckq in
equation (1) the relation: Bk−q = (−1)q Bkq holds and thus
Bkq may be represented as Bkq = Re Bkq + i Im Bkq , see,
e.g., [1, 4, 35, 20]. In fact, the symbols Bk

q for the real parts
of CFPs and iBk

q for the imaginary ones were used in [22],
instead of the proper ones Re Bkq and Im Bkq [1, 4, 35, 20],
respectively. The notation iBk

q is misleading as it represents a

multiplication of a given parameter by i = √−1. Moreover,
the symbols Bk

q and iBk
q used in [22] and those Bk

q and iSk
q used

in [23] confusingly resemble the extended Stevens operator
notation [36, 29]. It appears that this notation may have been
taken over from Porcher et al [27]. Note that Pujol et al [22]
use the inverted sequence of operators in the monoclinic terms,
namely iBk

q (Ck−q − Ck
q), whereas in the earlier paper [23] the

sequence: iSk
q (Ck

q − (−1)qCk−q) was used. Hence, the signs of
all CFPs i Bk

q in [22], i.e. Im Bkq , should be formally inverted
as compared with the notation in [23], which prevails in the
literature: Im Bkq(Ckq − Ck−q ) [1–5]. However, judging by
the correspondence of signs in [22] and [23], we assume that
the CF Hamiltonian in equation (3) in [22] is rather incorrectly
presented, whereas the CFPs in table 4 of [22] conform to the
usual sign conventions.

(ii) Distinction between the meaning of the symbolic, model,
and fitted CFPs

There is an evident lack of distinction between the meaning
of the symbolic, model, and fitted CFPs. The properties of
the distinct types of CFPs have been overlooked in [22] thus
leading partially to the consequences discussed in section 4.
The CFPs in equations (1) and (2) have only a symbolic
meaning as defined in [18]. It should be kept in mind that the

3
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form of HCF depends on the axis system and the simplest form
is obtained in the symmetry-adapted axis system [18]. The
two other types of CFPs involved in optical studies, namely the
model CFPs and the fitted CFPs, have distinct properties from
those of the symbolic CFPs used in a specific HCF form. The
model CFPs may be obtained from various theoretical model
calculations. As reviewed succinctly in [27], this may include
the superposition model (SPM) [37], angular overlap model
(AOM) [38, 39] and the exchange charge model (ECM) [40],
apart from the SOM [41] used in [22, 23]. Importantly,
any model CFP calculations must utilize the crystallographic
positions of ligands expressed in a specific axis system. Hence,
the model CFP sets must be expressed in that well-defined axis
system used to represent the ionic positions of ligands.

In contrast, the fitted CFPs, as discussed in [18], cannot
be assigned any particular axis system with known orientation
w.r.t. the crystallographic axis system (CAS). The fitted CFPs
are obtained by simultaneous diagonalization of the matrix
of the Hamiltonian (HFI + HCF) within the basis functions
|SLJMJ 〉 and fitting the experimental crystal-field levels. Note
that the IMAGE f-shell computer package developed by
Porcher [42] was used in the CF calculations [22]. In view of
the existence of several physically equivalent solutions, each
fitted CFP set must be considered as expressed in an undefined
axis system, denoted in [18] as a ‘nominal’ axis system. The
actual orientation in crystal of the ‘nominal’ axis system for
any fitted CFP set may be determined by comparing the fitted
CFP sets, corresponding to given regions of the multiparameter
CFP space, with the CFP set obtained from a theoretical model.
Hence, only such undefined ‘nominal’ axis system, and not the
axis system used for the SOM calculations, may be initially
assigned to the fitted CFP sets obtained in [22, 23].

(iii) Relative orientation of the axis system used in the SOM
calculations w.r.t. the crystallographic axes

Since the Tm-KREW (RE = Gd, Lu) crystals are monoclinic,
the crystallographic axis system (CAS): (a, b, c), does not
form a Cartesian axis system. Hence, a modified CAS, denoted
as CAS∗, must be defined with either the a axis or c axis
taken as the asterisked axis perpendicular to the b axis and
the remaining crystallographic axis. This leaves two options
for the modified CAS∗: either (a∗, b, c) or (a, b, c∗). The
monoclinic C2 symmetry axis turns out to coincide with the
b axis [22]. However, doubts arise concerning the definition
of the axis system used in the SOM calculations in [22], since
neither the CAS nor CAS∗ has been explicitly mentioned. An
inspection of the SOM [27] listed in [22] has not provided any
clue concerning the definition of the axis system actually used
in the SOM calculations. Without a clear definition of the axis
system, only a tentative comparison of the SOM calculated
CFPs [22] with the fitted CFPs and/or other pertinent CFPs
obtained by others for related ion–host systems may be made.
Additionally, two general comments, namely (iv) and (v)
below, are pertinent concerning the orientation of the axis
system used in the SOM calculations.

(iv) Appropriateness of the specific monoclinic CF
Hamiltonian form employed

Out of three possible physically equivalent forms of
monoclinic HCF [16, 18] discussed in section 2, a specific
form in equation (2), which corresponds to the case C2 ‖ z,
was employed in [22, 23]. However, no proper justification
for this choice has been provided by the authors [22, 23].
In order to ensure compatibility of the model and fitted
CFPs, this choice should be explicitly adopted in the SOM
calculations. However, as discussed in point (iii) above no such
consideration has been invoked in [22, 23].

(v) Interpretation and appropriateness of the R approach
versus the C approach

The reduction of one CFP by a ‘proper choice of the reference
axis system, which cancels the complex iB2

2 ’, which was
used in [22, 23] for the fitted CFPs, is equivalent to the R
approach defined in [16]; see also [18, 43]. Importantly, instead
of Im B22 (iB2

2) another monoclinic CFP of the higher-rank
Im B4q or Im B6q may be set to zero [18, 43]. Note that
alternatively any real counterpart CFP Re Bkq (q 	= 0) may be
equally well set to zero. Such choices, so rarely used, represent
alternative versions of the R approach [16, 18, 43].

Interpretation of the one-parameter reduction involved in
the R approach given in the above quote [22, 23] is commonly
presented in the literature. However, in fact, no choice of the
reference axis system does take place and such a reduction does
not involve any real ‘rotation’ of the reference axis system.
Proper interpretation of the R approach requires taking into
account the ‘nominal’ meaning of the axis systems assigned
to the fitted CFPs [18] discussed in section 3(ii). Hence,
any version of the R approach represents a selection, for the
fitting procedure, of a particular parametrization for the CFPs
out of various parametrization schemes that consist in setting
to zero a particular monoclinic symbolic CFP [16, 18, 43].
Importantly, from CF energy levels fittings only the ‘length of
a vector’ vkq formed by the CFP pairs with a given k: |vkq | =
({Re Bkq}2 + {Im Bkq}2)1/2 may be determined [16, 18].

A more serious misinterpretation of the R approach is
its usage in the model calculations in [22]. For monoclinic
crystals, the ionic positions of ligands given originally in the
non-Cartesian CAS (a, b, c) should be firstly recalculated into
the modified CAS∗: (a∗, b, c) or (a, b, c∗). Next, with the
b(C2) axis taken as the z axis for the HCF in equation (2), all
monoclinic CFPs should be determined from the SOM. Then,
the rotation around the z axis by an angle α required to cancel
Im B22 in equation (3) could be performed to determine the
monoclinic angle w.r.t. the modified CAS∗ used. However, no
such procedure has been mentioned in [22]. Even if the SOM
CFPs were calculated using a proper Cartesian axis system,
since the CFP Im B22 was simply omitted from calculations,
the model CFP values in table 4 of [22] must be considered as
corresponding to the ‘unrotated’ axis system, in which a non-
zero value of Im B22 may be expected.

To assess the effect of the incorrect R approach on the
SOM-calculated CFP values [22], simulated calculations have
been carried out. For illustration, the simulated CFP values for

4
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Table 1. The simulated CFP sets (C1–C5) for Tm3+ ions in KGdW assuming the reasonable values of Im B22, as compared with the values
of B20 and Re B22 in the original set (R) arising from the R approach [22], had the Cx sets been originally obtained from the SOM using the C
approach; S4 = 474, S6 = 144 (cm−1).

SOM sets Original R C1 C2 C3 C4 C5

B20 447 447.0 447.0 447.0 447.0 447.0
Re B22 276 293.6 340.9 407.7 486.0 571.1
Im B22 0 100 → 0 200 → 0 300 → 0 400 → 0 500 → 0
α 0 −9.958◦ −17.964◦ −23.693◦ −27.697◦ −30.551◦

κ 0.618 0.657 0.763 0.912 1.087 1.278

B40 −783 −783.0 −783.0 −783.0 −783.0 −783.0
Re B42 269 2.2 −214.0 −359.5 −453.0 −514.4
Im B42 −736 −783.6 −753.8 −696.3 −639.4 −591.2
Re B44 −170 27.7 181.8 260.3 291.3 299.6
Im B44 247 298.6 238.5 148.9 71.3 12.2

B60 −211 −211.0 −211.0 −211.0 −211.0 −211.0
Re B62 205 229.5 229.4 218.3 205.3 193.6
Im B62 108 31.7 −32.8 −77.7 −107.4 −127.3
Re B64 79 76.0 47.4 17.4 −5.6 −21.8
Im B64 24 −32.2 −67.6 −80.7 −82.4 −79.6
Re B66 −168 50.1 199.9 228.4 200.4 158.7
Im B66 156 223.7 112.3 −20.1 −111.4 −165.4

S2 (cm−1) 265 273 294 326 367 413

Tm3+ ions in KGdW are provided in table 1. We assume the
values of Im B22 in a reasonable range as compared with the
values of B20 and Re B22 and then calculate the CFP sets which
would have been obtained after reduction of Im B22 to zero had
the C approach been originally used in the model calculations.
As could be expected, inclusion of the non-zero Im B22, which
mimics the C approach to be originally used, results after
the rotation α/Oz defined in equation (3) in a progressive
increase in Re B22 with increasing value of Im B22, while by
default leaving the parameters Bk0 invariant. Table 1 indicates
convincingly the inappropriateness of using the R approach as
the starting point in the SOM calculations. This conclusion
is valid also for any other type of model calculations. Since
the CFP sets resulting from the mimicking procedure remain
non-standard (see table 1), it would be necessary to standardize
such sets as discussed in section 2. In principle, the change of
the region in the CFP space may be induced for sufficiently
large values of Im B22, resulting in CFP sets belonging to the
next region corresponding to the greater (absolute) values of
the ratio κ (see appendix A). Note that the CFP strength
parameters [44, 20] for a given rank Sk (k = 2, 4, 6) and
the global one Sg used in [22, 23] are invariant under rotations
of the axis system. Hence, for all transformed CFP sets the
quantities Sk have the same value. However, it is not the case
if one CFP is omitted from the SOM calculations as in the R
approach used in [22]. This omission yields different values of
S2, whereas the same S4 and S6 are obtained for the sets listed
in table 1 and denoted C1–C5.

(vi) General reasons for disparities between CFPs

In many instances it happens that the orthorhombic
and lower symmetry standardization provides means to

reconcile the differences between CFP sets reported by
various authors. Thus this procedure helps to solve the
controversial claims about the inaccuracy of the data of fellow
researchers [15, 33, 34]. In the case such differences could
not be resolved in this way, the reasons for any remaining
disparities indicated, e.g. by the observed moderate and not
perfect closeness between the standardized CFPs, must be
searched for in a different realm. The possible reasons of such
disparities may be related either to (i) the factors related to the
inherent approximations made in the semi-empirical modelling
procedures used, e.g. SOM, AOM, SPM and ECM [27], or (ii)
the fitting procedures used to extract the fitted CFP sets from
raw experimental data.

In general, other reasons for disparities between CFPs
taken from various sources may include, e.g. quality of the
experimental energy levels, validity of the assignments of the
irreducible representations to the given states or correctness of
the numerical procedures used to obtain the CFP sets from
fittings. Some inconsistencies in the previously established
sequences of energy levels of Tm3+ in both KGdW [9]
and KLuW [45] have been mentioned by Pujol et al [22].
The differences in the observed energy levels, quoting [22]:
‘correspond to either the removal of uncertain and low intense
energy levels or to the revision of formerly indicated light
polarizations under which they were observed’.

In view of Burdick’s et al intensity studies, see,
e.g., [46, 47], indicating a plethora of multiple local minima
that fit the data nearly equally well, it is rather surprising
that only single-fitting results were reported in most cases (for
references, see, e.g., [15, 33, 34]). It may be possible that
any controversial CFP sets may represent two different closely
lying local minima. Repeating the fittings using the original
experimental energy levels may result in CFP sets being closer
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Table 2. The original (S1) theoretical (SOM) and experimental (fit) CFP sets (cm−1) in the Wybourne notation for Tm3+ in KGd(WO4)2 [22]
together with the alternative CFP sets (S2–S6), rhombicity ratios κ and rotational invariants Sk (cm−1). Standard sets are indicated by an
asterisk ‘*’; the dash (—) denotes non-applicable data items. Values in parentheses are the estimated standard deviations for the original fitted
set S1.

Set # SOM: S1/S3 S2∗/S5 S4/S6 Fit: S1/S3 S2∗/S5 S4/S6

B20 447 −561.5 114.5 299(16) −594.1 295.1
Re B22 ±276 ∓135.7 ∓411.7 ±363(11) ∓1.6 ∓364.6
κ ±0.617 ±0.242 ∓3.596 ±1.214 ±0.003 ∓1.236

B40 −783 −258.8 −684.1 −893(26) −344.1 −401.0
Re B41/ Im B41 — ±29.2 ±491.3 — ∓19.2 ∓497.2
Re B42 ±269 ∓62.6 ∓331.6 ±36(26) ∓311.2 ∓347.2
Im B42 −736 — — −676(19) — —
Re B43/ Im B43 — 775.8 601.1 — 729.9 534.8
Re B44 −170 −608.6 −252.8 −36(28) −495.3 −447.7
Im B44 ±247 — — ±276(29) — —

B60 −211 38.8 −17.8 −27(39) −9.7 221.6
Re B61/ Im B61 — ±168.9 ±148.2 — ±215.8 ±112.7
Re B62 ±205 ∓171.7 ±279.8 ±231(32) ∓113.9 ±178.8
Im B62 108 — — 48(30) — —
Re B63/ Im B63 — 4.9 −28.0 — 26.9 −136.1
Re B64 79 145.8 130.6 −139(28) −134.4 −72.6
Im B64 ±24 — — ±119(28) — —
Re B65/ Im B65 — ±89.5 ±117.7 — ∓12.2 ±127.4
Re B66 ∓168 ±217.4 ∓57.1 ∓34(37) ±207.7 ∓111.4
Im B66 156 — — 176(28) — —

Sk S2 = 265 S4 = 474 S6 = 144 S2 = 266 S4 = 456 S6 = 137

to each other. However, it should be kept in mind that even
for a very well-studied system, namely LiYF4 doped with a
number of RE3+ ions, the CFPs even for the same ion reported
by various authors reveal large disparities [48].

4. Comparative analysis of CFPs for Tm3+ ions in
KGdW and KLuW, and Ho3+ and Er3+ ions in
KGdW

For each original theoretical and experimental CFP set for
Tm3+ ions in KGdW and KLuW [22] five correlated alternative
CFP sets have been additionally determined as listed in tables 2
and 3, respectively. Similarly the alternative CFP sets for the
CFP sets fitted for Ho3+ and Er3+ ions in KGdW [23] are listed
in table 4. The monoclinic standardization transformations
S2−S6 [14, 16] are performed using the CST package [32]. At
first glance the existence of such alternative CFP sets (tables 2
and 3) appears to hinder achieving unique fittings. However,
it is a blessing in disguise and may be used as an advantage.
These sets may be utilized within the multiple correlated fitting
technique (MCFT) originally proposed in [16] and extended
in [18]. The cornerstone of the MCFT is the procedure [16, 18]
based on several independent fittings in distinct regions of the
CFP space, which enables us to improve the reliability of the
final fitted results. The MCFT has been applied successfully
for several RE3+ ion–host systems [15, 17, 20]. The fittings
may be performed using any of the sets S1–S6 in tables 2–
4 as the starting set and varying all CFPs. The recent
study [20] indicates that such fittings converge into nearly
the same solution (within the parameter uncertainty) after

transformation into the standard range. Each fitted solution
yielded almost identical values of the invariants Sk [16, 18]
and the same r.m.s. deviation of 11.1 cm−1 [20]. This indicates
convincingly that the minimum that is closest to the starting
point is well defined, with the starting point being near neither
an inflection point nor a saddle point between multiple local
minima.

This appears to not be the case for the fitted CFP sets
for Tm3+ ions in KGdW and KLuW determined by Pujol
et al [22]. The disparity between the model CFP sets and
the fitted ones in [22] is quantified by the rhombicity ratio
listed in tables 2 and 3. The model CFPs and the fitted CFPs
for RE3+ ions in both crystals [22, 23] turn out to be non-
standard [14, 16]. Importantly, the model and fitted CFP sets
for Tm-KLuW belong to disparate regions of the CFP space
and thus are intrinsically incompatible [21]. Thus the two types
of CFP sets [22] should not be directly compared [17, 18, 21]
and hence, as discussed below, explanation of this disparity
must be sought elsewhere.

Since the CFP sets [22, 23] concern RE ions in the same
and structurally close crystals, it is worthwhile to quantitatively
compare the standardized CFP sets using the closeness factors
and the norms ratios defined in [18, 15]; see modifications
in [33]. These quantities are calculated in table 5 for each
pair of the standardized CFPs in tables 2–4. The norm ratios
are selected so that the values would be confined in the range
0–1 in [18, 15, 33]. Generally, all standardized sets appear
to be close for k = 2 and 4: however, larger differences are
observed for k = 6. Importantly, the same ‘comparability’
in terms of the closeness factors and the norms ratios that is
obtained for the sets expressed in the standard region should
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Table 3. The original (S1) theoretical (SOM) and experimental (fit) CFP sets (cm−1) in the Wybourne notation for Tm3+ in KLu(WO4)2

together with the alternative CFP sets (S2–S6) and rotational invariants Sk . For other explanations see table 2.

Set # SOM: S1/S3 S2∗/S5 S4/S6 Fit: S1/S3 S2/S5∗ S4/S6

B20 441 −695.7 254.7 332(17) −670.6 338.6
Re B22 ±388 ∓76.1 ∓464.1 ±412(11) ±2.692 ∓409.31
κ ±0.880 ±0.109 ∓1.822 1.241 ∓0.004 ∓408.908

B40 −905 −429.5 −1058.8 −976(31) −344.08 −467.41
Re B41/ Im B41 — ±114.8 ±388.0 — ∓67.03 ±595.24
Re B42 ±398 ±97.2 ∓300.8 ±78(28) ∓321.66 ∓399.66
Im B42 −711 — — −747(19) — —
Re B43/ Im B43 — 716.7 613.5 — 823.91 573.60
Re B44 −387 −784.9 −258.4 −38(27) −566.70 −463.52
Im B44 ±146 — — ±354(33) — —

B60 −97 88.1 248.9 −31(41) 126.39 −42.472
Re B61/ Im B61 — ±200.7 ±149.6 — ±151.91 ±98.213
Re B62 ±170 ∓46.4 ±176.0 ±104(32) ∓148.0 ±183.60
Im B62 63 — — −8(30) — —
Re B63/ Im B63 — −9.9 −90.7 — −28.797 −113.69
Re B64 −197 −147.5 −104.6 −46(36) −3.9355 −49.066
Im B64 ±59 — — ±62(29) — —
Re B65/ Im B65 0 ±36.0 ±105.2 0 ∓27.185 ±45.517
Re B66 ∓30 ±213.3 ∓21.2 ∓159(33) ±93.741 ∓40.937
Im B66 185 — — 144(33) — —

Sk S2 = 315 S4 = 526 S6 = 133 S2 = 300 S4 = 509 S6 = 99

Table 4. The original (S1) experimental (fit) CFP sets (cm−1) in the Wybourne notation for Ho3+ and Er3+ ions in KGd(WO4)2 [23] together
with the alternative CFP sets (S2–S6), rhombicity ratios κ and rotational invariants Sk . For other explanations see table 2.

Ion Ho3+ Er3+

Set # S1/S3 S2/S5∗ S4/S6 S1/S3 S2∗/S5 S4/S6

B20 286(24) −580.2 294.2 303(28) −469.93 166.93
Re B22 ±357(17) ±3.4 ∓353.6 ±260 ∓55.55 ∓315.6
κ ±1.248 ∓0.006 ∓1.202 ±0.858 ±0.118 ∓1.891

B40 −724(29) −37.2 −244.3 −986(47) −88.53 −128.1
Re B41/ Im B41 — ∓66.8 ±578.7 — ∓69.66 ±643.1
Re B42 ±131(34) ∓303.4 ∓434.4 ±25(63) ∓542.6 ∓567.61
Im B42 −724(19) — — −811(30) — —
Re B43/ Im B43 — 799.2 555.3 — 893.3 623.9
Re B44 125(29) −449.6 −276.3 250(53) −500.9 −467.8
Im B44 ±345(24) — — ±381(38) — —

B60 −60(33) 63.2 −135.2 36(67) 38.8 −68.3
Re B61/ Im B61 — ±24.7 ±113.9 — ±58.6 ±70.7
Re B62 ±256(28) ∓322.7 ±334.5 ±173(51) ∓224.6 ±199.8
Im B62 −241(24) — — −229(38) — —
Re B63/ Im B63 — −267.7 −126.7 — −196.3 −177.2
Re B64 78(31) 110.9 57.9 5(63) 5.74 −22.875
Im B64 ∓103(38) — — ∓14(62) — —
Re B65/ Im B65 — ∓118.7 ∓239.5 — ∓162.1 ∓178.5
Re B66 ∓277(26) ±178.0 ∓160.6 ∓173(42) ±96.51 ∓133.2
Im B66 133(31) — — 125(44) — —

Sk S2 = 260 S4 = 457 S6 = 191 S2 = 213 S4 = 548 S6 = 141

also be obtained for the respective CFP sets in each of the

five non-standard regions. However, calculations of these

quantities for any pair of the CFPs belonging to disparate

regions of the CFP space would be meaningless. Analysis

of data in table 5 may be linked with an inspection of the

original experimental CFP sets in [22, 23], which reveals

what follows. Significant uncertainties may be noticed in the

values of several CFPs, in some cases comparable or even
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Table 5. The closeness factors and the norm ratios—global (gl) and for rank k = 2, 4, and 6—for each pair of the standardized (*) CFP sets
in tables 2–4 denoted: (1) SOM Tm:KGdW, (2) fit Tm:KGdW, (3) SOM Tm:KluW, (4) fit Tm:KLuW, (5) fit Ho:KGdW, and (6) fit Er:KGdW.

Closeness factors Norm ratios

(1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

gl 0.9569 0.9735 0.9491 0.9084 0.8757 gl 0.9325 0.8224 0.9083 0.9844 0.8291
2 0.9475 0.9846 0.9481 0.9489 0.9866 2 0.9976 0.7105 0.7830 0.9561 0.6447
4 0.9594 0.9797 0.9675 0.9443 0.8943 4 0.9247 0.8119 0.8658 0.9283 0.7474
6 0.9521 0.9198 0.8323 0.7134 0.6553 6 0.8991 0.8495 0.4681 0.5722 0.9517

(2, 3) (2, 4) (2, 5) (2, 6) (5, 6) (2, 3) (2, 4) (2, 5) (2, 6) (5, 6)

gl 0.9512 0.9805 0.9198 0.9214 0.9645 gl 0.7669 0.8470 0.9179 0.7731 0.8423
2 0.9888 1.0000 1.0000 0.9869 0.9876 2 0.7122 0.7848 0.9538 0.6432 0.6743
4 0.9442 0.9984 0.9699 0.9657 0.9857 4 0.7508 0.8007 0.9962 0.6912 0.6938
6 0.9627 0.8129 0.6067 0.5312 0.9441 6 0.9449 0.5206 0.5145 0.9447 0.5446

(3, 4) (3, 5) (3, 6) (4, 5) (4, 6) (3, 4) (3, 5) (3, 6) (4, 5) (4, 6)

gl 0.9457 0.8555 0.8333 0.9298 0.9425 gl 0.9054 0.8355 0.9920 0.9228 0.9128
2 0.9891 0.9895 0.9999 1.0000 0.9872 2 0.9074 0.6793 0.4581 0.7486 0.5048
4 0.9526 0.8985 0.8581 0.9765 0.9666 4 0.9377 0.7537 0.9205 0.8037 0.8632
6 0.7589 0.5092 0.4364 0.6828 0.7055 6 0.5510 0.4861 0.8926 0.2678 0.4918

exceeding the values of fitted CFPs (see tables 2–4). The values
of the quantities Ck and Rk (k = 2, 4, 6) and the global
factors Cgl and Rgl in table 5 for the pairs of standardized
CFP sets reflect the relatively poor closeness of some of the
theoretical and experimental CFP sets. It may be expected that
using the CFP sets, which could be obtained using the SOM
calculations based on the C approach as proposed in section 3,
as initial sets for independent fittings in five other Si regions
of the CFP space using MCFT would indicate a better overall
compatibility of the final fitted CFP sets with the respective
initial ones.

The intrinsic properties of the orthorhombic and
monoclinic CFPs [14, 15] underlie the problems evident
in [22, 23], which concern interpretation of CFP values in
terms of structural data. In view of the standardized CFP
sets, all statements based on the non-standard values of B20

and Re B22, which may potentially belong to disparate regions
in the CFP space, must be reconsidered using intrinsically
compatible sets. This may be achieved most conveniently
using the standardized sets. Let us consider specific
examples of such statements identified in [22]. Statement (i):
‘Differences between the sets of CF parameters for Tm3+ in
KGdW and KLuW crystals reflect specific crystallographic
features of the C2 sites they are occupying. Larger values of B2

0
(i.e. B20) and B2

2 (i.e. Re B22) parameters for KLuW suggest
a more ionic and distorted Tm3+ short-range environment
than in KGdW.’ An inspection of the standardized CFP sets
in tables 2 and 3 reveals that this statement remains only
partially valid. Larger values of B20 are obtained for KLuW
for both the SOM-derived and fitted CFP sets: however, the
SOM parameter Re B22 for KLuW is significantly smaller than
that for KGdW. Interestingly, for each system the standardized
fitted CFP Re B22 is close to zero and in comparison with
the values of B20 it is virtually negligible. This indicates an
effective tetragonal-like symmetry of the fitted second-rank
CFP sets.

Statement (ii): ‘As shown in figure 4(a), an evolution
to nearly constant magnitude can describe the behaviour of
short-range B20 parameters from 4 f 2 to 4 f 12 configurations,
while somewhat higher magnitudes can describe the same
behaviour in B22 parameters. It seems that the CF weakening
due to the nuclear charge increase criterion is compensated,
and for B22 even surpassed, by its enhancement derived of
the reduction of some RE–O distance from Pr3+ to Tm3+-
doped crystals’. Consideration of the problems concerning the
variation of the ‘phenomenological’ CFPs for RE ions in RE-
KGdW crystals across the 4fN series, presented in figure 4(a)
of [22] and figure 1 of [23], requires reanalysis of the CFP sets
for Pr3+ and Nd3+ ions in other AB(WO4)2 crystals [24–26],
in addition to the CFP sets for Tm3+ ions in KGdW and
KLuW, and Ho3+ and Er3+ ions in KGdW dealt with here.
This reanalysis will be carried out in Part II. Here we note
only that the authors [22, 23] did not ascertain the intrinsic
comparability of the CFP sets used in the systematics across
the RE series. Such indiscriminate usage of CFP sets taken
from various sources may be misleading.

5. Summary and conclusions

The crystal-field (CF) analysis of optical absorption spectra
carried out by Pujol et al for Tm3+ ions in KGd(WO4)2

(KGdW) and KLu(WO4)2 (KLuW) single crystals [22], and
Ho3+ and Er3+ ions in KGdW [23] have been revisited
in this Part I. Simultaneous fittings of the 24 parameters,
with some constraints on the free-ion parameters, and CF
Hamiltonian for the actual C2 symmetry of the metal site
have been carried out [22, 23] using the reduced (R)

8



J. Phys.: Condens. Matter 22 (2010) 045501 C Rudowicz and P Gnutek

approach [16, 18], i.e. with the second-rank CF parameter
Im B22 set to zero. The initial CFPs for fittings were calculated
in [22] using the simple overlap model (SOM) assuming
inappropriately the R approach, instead of the complete (C)
approach [16, 18].

To overcome the difficulties encountered in the CF
studies [22, 23], we propose a consistent methodology for
CF analysis for transition ions at monoclinic symmetry
(Cs, C2, C2h) sites in crystals, which takes into account
the intrinsic properties of the orthorhombic [14, 15] and
monoclinic CF Hamiltonians [16–20]. These properties
bear significantly on the meaningfulness of CF studies and
interpretation of the resulting CFPs. An apparent lack of
awareness of these properties by some authors, including
Pujol et al [22, 23], may lead to misinterpretation of the
model and fitted CFPs determined for various RE3+ ions
in KRE(WO4)2 crystals. Consistent and accurate modelling
of CF interactions is indispensable to establish the correct
4f12 Tm3+ configuration in a given crystal host. Disregarding
the intrinsic CFP properties in CF analysis for orthorhombic
and lower symmetry can lead to errors in the evaluation of the
spectroscopic parameters involved in laser operation [22].

Critical examination of the study [22] has also revealed
several other doubtful aspects, some of which apply also for
the study [23]. These aspects, clarified in this Part, concern
(i) notation for CFP symbols, (ii) distinction between the
meaning of the symbolic, model and fitted CFPs, (iii) relative
orientation of the axis system used in the SOM calculations
w.r.t. the crystallographic axes, (iv) appropriateness of the
specific monoclinic CF Hamiltonian form employed, (v)
interpretation and appropriateness of the R approach versus
the C approach and (vi) general reasons for disparities between
CFP sets.

Comparative analysis of CFPs reveals the importance of
proper definitions of the axis system used in model calculations

of CFPs and the nominal meaning of the axis systems
assigned to the fitted CFPs. The present methodology may
be considered as a general framework for analysis of CF
levels and modelling of CFPs for rare-earth ions at monoclinic
symmetry sites. CFP sets for Pr3+ and Nd3+ ions in other
AB(WO4)2 crystals [24–26] will be dealt with in Part II,
whereas other relevant CFP sets for RE3+ ions at monoclinic
symmetry sites reported in the literature may also need critical
examination as reviewed in [21].
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Appendix A. Choices for assigning orthorhombic
symmetry axes

Figure A.1 presents a diagram depicting the six choices for
assigning orthorhombic axes (±a1,±a2,±a3) to a Cartesian
axis system: S1(x, y, z), S2(x,−z, y), S3(y, x,−z),
S4(y, z, x), S5(z, x, y), S6(−z, y, x), while adhering to the
right-handed axis system convention. Ranges of the original
rhombicity ratio {λ′ = B2

2/B0
2 } in the extended Stevens

operator notation and {κ = Re B22/B20} in the Wybourne
notation, and the transformation angles corresponding to each
choice, are also indicated in figure A.1; for references and
explanations, see section 2.

Appendix B. Orthorhombic and monoclinic
standardization transformations of CFPs in the
Wybourne notation

Figure A.1. Definition of the axis systems used for standardization and their interrelationships.
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Table B.1. Standardization transformations Si for the original orthorhombic CFPs {Bkq} expressed in the Wybourne notation based on limiting the rhombicity ratio
[κ] = [Re B22]/[B20] for the transformed CFPs [Bkq ] within the standard range (0, 1/

√
6). The long dash (—) denotes non-applicable data items.

Transformed
system S6 (upper sign)/S4 (lower sign) S3 S2 (upper sign)/S5 (lower sign)

B20 [B20] − 1
2 {B20} +

√
6

2 {Re B22} {B20} − 1
2 {B20} −

√
6

2 {Re B22}
Re B21 — —/{Im B22} — {Im B22}/—

Im B21 — −{Im B22}/— — —/−{Im B22}
Re B22 [Re B22] ±(

√
6

4 {B20} + 1
2 {Re B22}) {− Re B22} ±(−

√
6

4 {B20} + 1
2 {Re B22})

Im B22 [Im B22] — {Im B22} —

B40 [B40] 3
8 {B40} −

√
10
4 {Re B42} +

√
70
8 {Re B44} {B40} 3

8 {B40} +
√

10
4 {Re B42} +

√
70
8 {Re B44}

Re B41 — —/−
√

2
4 {Im B42} +

√
14
4 {Im B44} — −

√
2

4 {Im B42} −
√

14
4 {Im B44}/—

Im B41 —
√

2
4 {Im B42} −

√
14
4 {Im B44}/— — —/

√
2

4 {Im B42} +
√

14
4 {Im B44}

Re B42 [Re B42] ±(−
√

10
8 {B40} + 1

2 {Re B42} +
√

7
4 {Re B44}) {− Re B42} ±(

√
10
8 {B40} + 1

2 {Re B42} −
√

7
4 {Re B44})

Im B42 [Im B42] — {Im B42} —

Re B43 — —/−
√

14
4 {Im B42} −

√
2

4 {Im B44} — −
√

14
4 {Im B42} +

√
2

4 {Im B44}/—

Im B43 — −
√

14
4 {Im B42} −

√
2

4 {Im B44}/— — —/−
√

14
4 {Im B42} +

√
2

4 {Im B44}
Re B44 [Re B44]

√
70

16 {B40} +
√

7
4 {Re B42} + 1

8 {Re B44} {Re B44}
√

70
16 {B40} −

√
7

4 {Re B42} + 1
8 {Re B44}

Im B44 [Im B44] — {− Im B44} —

B60 [B60] − 5
16 {B60} +

√
105
16 {Re B62} − 3

√
14

16 {Re B64} +
√

231
16 {Re B66} {B60} − 5

16 {B60} −
√

105
16 {Re B62} − 3

√
14

16 {Re B64} −
√

231
16 {Re B66}

Re B61 — —/
√

10
16 {Im B62} −

√
3

4 {Im B64} + 3
√

22
16 {Im B66} —

√
10

16 {Im B62} +
√

3
4 {Im B64} + 3

√
22

16 {Im B66}/—

Im B61 —
√

10
16 {Im B62} −

√
3

4 {Im B64} + 3
√

22
16 {Im B66}/— — —/

√
10

16 {Im B62} +
√

3
4 {Im B64} + 3

√
22

16 {Im B66}
Re B62 [Re B62] ±(

√
105
32 {B60} − 17

32 {Re B62} +
√

30
32 {Re B64} + 3

√
55

32 {Re B66}) {− Re B62} ±(−
√

105
32 {B60} − 17

32 {Re B62} −
√

30
32 {Re B64} + 3

√
55

32 {Re B66})
Im B62 [Im B62] — {Im B62} —

Re B63 — —/ 9
16 {Im B62} −

√
30
8 {Im B64} −

√
55

16 {Im B66} — 9
16 {Im B62} +

√
30
8 {Im B64} −

√
55

16 {Im B66}/—

Im B63 — − 9
16 {Im B62} +

√
30
8 {Im B64} +

√
55

16 {Im B66}/— — —/− 9
16 {Im B62} −

√
30
8 {Im B64} +

√
55

16 {Im B66}
Re B64 [Re B64] − 3

√
14

32 {B60} +
√

30
32 {Re B62} + 13

16 {Re B64} +
√

66
32 {Re B66} {Re B64} − 3

√
14

32 {B60} −
√

30
32 {Re B62} + 13

16 {Re B64} −
√

66
32 {Re B66}

Im B64 [Im B64] — {− Im B64} —

Re B65 — —/
√

165
16 {Im B62} +

√
22
8 {Im B64} +

√
3

16 {Im B66} —
√

165
16 {Im B62} −

√
22
8 {Im B64} +

√
3

16 {Im B66}/—

Im B65 —
√

165
16 {Im B62} +

√
22
8 {Im B64} +

√
3

16 {Im B66}/— — —/
√

165
16 {Im B62} −

√
22
8 {Im B64} +

√
3

16 {Im B66}
Re B66 [Re B66] ±(

√
231
32 {B60} + 3

√
55

32 {Re B62} +
√

66
32 {Re B64} + 1

32 {Re B66}) {− Re B66} ±(−
√

231
32 {B60} + 3

√
55

32 {Re B62} −
√

66
32 {Re B64} + 1

32 {Re B66})
Im B66 [Im B66] — {Im B66} —
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Condens. Matter 20 345219

[23] Pujol M C, Cascales C, Rico M, Massons J, Dıaz F,
Porcher P and Zaldo C 2001 J. Alloys Compounds
323/324 321

[24] Mironov V S and Li L E 1998 J. Alloys Compounds 279 83
[25] Zaldo C, Rico M, Cascales C, Pujol M C, Massons J,

Aguilo M, Dıaz F and Porcher P 2000 J. Phys.: Condens.
Matter 12 8531

[26] Mendez-Blas A, Rico M, Volkov V, Cascales C, Zaldo C,
Coya C, Kling A and Alves L C 2004 J. Phys.: Condens.
Matter 16 2139

[27] Porcher P, Couto dos Santos M and Malta O 1999 Phys. Chem.
Chem. Phys. 1 397

[28] Malta O L 1982 Chem. Phys. Lett. 87 27
Malta O L 1982 Chem. Phys. Lett. 88 353

[29] Rudowicz C 1987 Magn. Reson. Rev. 13 1
Rudowicz C 1988 Magn. Reson. Rev. 13 335 (erratum)

[30] Rudowicz C and Misra S K 2001 Appl. Spectrosc. Rev. 36 11
[31] Mulak J and Mulak M 2005 J. Phys. A: Math. Gen. 38 6081
[32] Rudowicz C 2000 Crystal Field Handbook ed D J Newman and

B Ng (Cambridge: Cambridge University Press) p 259
[33] Rudowicz C, Gnutek P, Lewandowska M and Orłowski M 2009

J. Alloys Compounds 467 98
[34] Rudowicz C, Gnutek P and Lewandowska M 2009 J. Alloys

Compounds 467 106
[35] Rudowicz C 1985 Chem. Phys. 97 43
[36] Rudowicz C 1985 J. Phys. C: Solid State Phys. 18 1415

Rudowicz C 1985 J. Phys. C: Solid State Phys.
18 3837 (erratum)

[37] Newman D J and Ng B 1989 Rep. Prog. Phys. 52 699
[38] Gajek Z and Mulak J 1992 J. Phys.: Condens. Matter 4 427
[39] Gajek Z 2005 Phys. Rev. B 67 045139
[40] Malkin B Z 1987 Spectroscopy of Solids Containing

Rare-Earth ed A A Kaplyanskii and
B M Macfarlane (Amsterdam: North-Holland)

[41] Malta O L 1982 Chem. Phys. Lett. 87 27
Malta O L 1982 Chem. Phys. Lett. 88 353

[42] Porcher P 1989 Fortran Routines REEL and IMAGE for
simulation of d N and f N Configurations Involving Real and
Complex Crystal-Field Parameters Paris unpublished

[43] Burdick G W and Reid M F 2004 Mol. Phys. 102 1141
[44] Chang N C, Gruber J B, Leavitt R P and Morrison C A 1982

J. Chem. Phys. 76 3877
[45] Silvestre O, Pujol M C, Rico M, Güell F, Aguilo M and
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